Indian Statistical Institute, Bangalore

M. Math.

First Year, Second Semester Functional Analysis

Mid-term Supplementary Examination	Date: 01 March 2024
Maximum marks: 54	Time: 2 hours
	Instructor: Chaitanya G K

1. Let D be the open unit disc in \mathbb{C} and \overline{D} be its closure. Let X be the set of all complex-valued functions on \overline{D} which are analytic in D. For $f \in X$, let

$$||f|| = \sup\{|f(e^{it})| : 0 \le t \le 2\pi\}.$$

Show that X is a Banach space.

2. Show that the dual of l^1 is l^{∞} . [10]

[10]

[12]

- 3. State and prove Riesz lemma.
- 4. Is the Riesz representation theorem valid in general inner product spaces? Justify your answer. [8]
- 5. Let X be an inner product space. Prove that $x_n \to x$ if and only if $\langle x_n, y \rangle \to \langle x, y \rangle$ uniformly for y in X with ||y|| = 1. [10]
- 6. Let H be a Hilbert space and $T: H \to H$ be an isometric linear map. Show that the following statements are equivalent:
 - (a) T is unitary.
 - (b) T is onto.
 - (c) The range of T is dense in H. [10]
